27 research outputs found

    Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance

    Get PDF
    Background Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200–400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. Results Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. Conclusions This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The assemblies that were used provide coverage of a considerable proportion of the transcriptome, which allows analysis of differential gene expression and identification of genes that may be involved in salt tolerance. The transcriptome may serve as a reference sequence for study of other succulent halophytes.Pakistan-U.S. Science and Technology Cooperation Program, U.S. Dept. of State and Higher Education Commission of Pakistan, and by the Department of Microbiology and Molecular Biology at Brigham Young University

    Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance

    Get PDF
    ACKNOWLEDGMENTS We declare no conflicts of interest. We thank Jesús Pla for his kind gift of the anti-Mkc1 antibody and Kristin Moffitt and Richard Malley for generous advice in ELISA technology and use of the ELISA reader. We thank Tahmeena Chowdhury for scientific discussions leading up to this work. We thank the Candida Genome Database. N.-N.L., M.A.-Z., W.Q., and J.R.K. were supported by R21 AI137716 and by Boston Children’s Hospital Department of Pediatrics. M.A.-Z. was partially funded by the Alfonso Martin Escudero Foundation. J.D.-A. and O.L. were funded by the Boston Children’s Hospital Department of Pediatrics and U19 AI118608-01A1. N.A.R.G. was supported by the Wellcome Trust and the Medical Research Council Centre for Medical Mycology (MR/N006364/1).Peer reviewedPublisher PD

    A cloud-based bioinformatic analytic infrastructure and Data Management Core for the Expanded Program on Immunization Consortium.

    Get PDF
    The Expanded Program for Immunization Consortium - Human Immunology Project Consortium study aims to employ systems biology to identify and characterize vaccine-induced biomarkers that predict immunogenicity in newborns. Key to this effort is the establishment of the Data Management Core (DMC) to provide reliable data and bioinformatic infrastructure for centralized curation, storage, and analysis of multiple de-identified "omic" datasets. The DMC established a cloud-based architecture using Amazon Web Services to track, store, and share data according to National Institutes of Health standards. The DMC tracks biological samples during collection, shipping, and processing while capturing sample metadata and associated clinical data. Multi-omic datasets are stored in access-controlled Amazon Simple Storage Service (S3) for data security and file version control. All data undergo quality control processes at the generating site followed by DMC validation for quality assurance. The DMC maintains a controlled computing environment for data analysis and integration. Upon publication, the DMC deposits finalized datasets to public repositories. The DMC architecture provides resources and scientific expertise to accelerate translational discovery. Robust operations allow rapid sharing of results across the project team. Maintenance of data quality standards and public data deposition will further benefit the scientific community

    Licensed Bacille Calmette-Guérin (BCG) formulations differ markedly in bacterial viability, RNA content and innate immune activation.

    Get PDF
    BACKGROUND: Bacille Calmette-Guérin (BCG), the live attenuated tuberculosis vaccine, is manufactured under different conditions across the globe generating formulations that may differ in clinical efficacy. Innate immune recognition of live BCG contributes to immunogenicity suggesting that differences in BCG viability may contribute to divergent activity of licensed formulations. METHODS: We compared BCG-Denmark (DEN), -Japan (JPN), -India (IND), -Bulgaria (BUL) and -USA in vitro with respect to a) viability as measured by colony-forming units (CFU), mycobacterial membrane integrity, and RNA content, and b) cytokine/chemokine production in newborn cord and adult peripheral blood. RESULTS: Upon culture, relative growth was BCG-USA > JPN ? DEN > BUL = IND. BCG-IND and -BUL demonstrated >1000-fold lower growth than BCG-JPN in 7H9 medium and >10-fold lower growth in commercial Middlebrook 7H11 medium. BCG-IND demonstrated significantly decreased membrane integrity, lower RNA content, and weaker IFN-? inducing activity in whole blood compared to other BCGs. BCG-induced whole blood cytokines differed significantly by age, vaccine formulation and concentration. BCG-induced cytokine production correlated with CFU, suggesting that mycobacterial viability may contribute to BCG-induced immune responses. CONCLUSIONS: Licensed BCG vaccines differ markedly in their content of viable mycobacteria possibly contributing to formulation-dependent activation of innate and adaptive immunity and distinct protective effects

    A single birth dose of Hepatitis B vaccine induces polyfunctional CD4+ T helper cells.

    Get PDF
    A single birth-dose of Hepatitis B vaccine (HepB) can protect newborns from acquiring Hepatitis B infection through vertical transmission, though several follow-up doses are required to induce long-lived protection. In addition to stimulating antibodies, a birth-dose of HepB might also induce polyfunctional CD4+ T-cells, which may contribute to initial protection. We investigated whether vaccination with HepB in the first week of life induced detectable antigen-specific CD4+ T-cells after only a single dose and following completion of the entire HepB vaccine schedule (3 doses). Using HBsAg- stimulated peripheral blood mononuclear cells from 344 infants, we detected increased populations of antigen-specific polyfunctional CD154+IL-2+TNFα+ CD4+ T-cells following a single birth-dose of HepB in a proportion of infants. Frequencies of polyfunctional T-cells increased following the completion of the HepB schedule but increases in the proportion of responders as compared to following only one dose was marginal. Polyfunctional T-cells correlated positively with serum antibody titres following the birth dose (day30) and completion of the 3-dose primary HepB vaccine series (day 128). These data indicate that a single birth dose of HepB provides immune priming for both antigen-specific B- and T cells

    Preparing for Life: Plasma Proteome Changes and Immune System Development During the First Week of Human Life.

    Get PDF
    Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases

    Bacille Calmette-Guérin vaccine reprograms human neonatal lipid metabolism in vivo and in vitro.

    Get PDF
    Vaccines have generally been developed with limited insight into their molecular impact. While systems vaccinology enables characterization of mechanisms of action, these tools have yet to be applied to infants, who are at high risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) protects infants against disseminated tuberculosis (TB) and TB-unrelated infections via incompletely understood mechanisms. We employ mass-spectrometry-based metabolomics of blood plasma to profile BCG-induced infant responses in Guinea-Bissau in vivo and the US in vitro. BCG-induced lysophosphatidylcholines (LPCs) correlate with both TLR-agonist- and purified protein derivative (PPD, mycobacterial antigen)-induced blood cytokine production in vitro, raising the possibility that LPCs contribute to BCG immunogenicity. Analysis of an independent newborn cohort from The Gambia demonstrates shared vaccine-induced metabolites, such as phospholipids and sphingolipids. BCG-induced changes to the plasma lipidome and LPCs may contribute to its immunogenicity and inform the development of early life vaccines

    Bacille Calmette-Guérin vaccine reprograms human neonatal lipid metabolism in vivo and in vitro

    Get PDF
    Vaccines have generally been developed with limited insight into their molecular impact. While systems vaccinology enables characterization of mechanisms of action, these tools have yet to be applied to infants, who are at high risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) protects infants against disseminated tuberculosis (TB) and TB-unrelated infections via incompletely understood mechanisms. We employ mass-spectrometry-based metabolomics of blood plasma to profile BCG-induced infant responses in Guinea-Bissau in vivo and the US in vitro. BCG-induced lysophosphatidylcholines (LPCs) correlate with both TLR-agonist- and purified protein derivative (PPD, mycobacterial antigen)-induced blood cytokine production in vitro, raising the possibility that LPCs contribute to BCG immunogenicity. Analysis of an independent newborn cohort from The Gambia demonstrates shared vaccine-induced metabolites, such as phospholipids and sphingolipids. BCG-induced changes to the plasma lipidome and LPCs may contribute to its immunogenicity and inform the development of early life vaccines

    Integrative Metabolomics to Identify Molecular Signatures of Responses to Vaccines and Infections

    No full text
    Approaches to the identification of metabolites have progressed from early biochemical pathway evaluation to modern high-dimensional metabolomics, a powerful tool to identify and characterize biomarkers of health and disease. In addition to its relevance to classic metabolic diseases, metabolomics has been key to the emergence of immunometabolism, an important area of study, as leukocytes generate and are impacted by key metabolites important to innate and adaptive immunity. Herein, we discuss the metabolomic signatures and pathways perturbed by the activation of the human immune system during infection and vaccination. For example, infection induces changes in lipid (e.g., free fatty acids, sphingolipids, and lysophosphatidylcholines) and amino acid pathways (e.g., tryptophan, serine, and threonine), while vaccination can trigger changes in carbohydrate and bile acid pathways. Amino acid, carbohydrate, lipid, and nucleotide metabolism is relevant to immunity and is perturbed by both infections and vaccinations. Metabolomics holds substantial promise to provide fresh insight into the molecular mechanisms underlying the host immune response. Its integration with other systems biology platforms will enhance studies of human health and disease
    corecore